

Transition of Energy and Transport Systems How will we move about tomorrow?

Chair of Combustion Engines and Powertrain Systems, Prof. Dr.-Ing. F. Atzler

Basic statements

- THE FUTURE IS ELECTRIC
- Storage and transport of electricity is not cheap, robust and easy.
 Therefore, we electrolyse hydrogen from green electricity!
- Storage and transport of hydrogen is not cheap, robust and easy.
 Therefore, we produce substances, suitable for the new green world energy trade, e.g. methanol, from green hydrogen

Outline

Transition of Energy and Transport Systems. How will we move about tomorrow?

- Energy situation in Germany 2022 / 2050
- Short excursion into national Biomass (avoids imports)
- Imports
- What does the future look like? Forecasts 1990 \rightarrow 2020 \rightarrow 2050, also with respect to imports?
- Imports, Storage, Handling: Some properties of renewable energy carriers
- Can Germany supply ist own renewable energy? Are Imports necessary at all?
- World energy trade: Can the world be supplied with renewable energy?
 Simple assessment based on PV + Fraunhofer PTX Atlas
- The efficiency debate
- Cost: Rules of Industrial Production
- Cost: Hydrogen → How expensive is electrolysis? How many electrolysers would we need?
- Cost: eFuels
- Cost: Import of eFuels, including TRANSPORT
- Cost: Use of eFuels: Efficiency and cost per kilometre
- Conclusions: the Context of Efficiency, Need for Imports, Distance, Industrial Production and Cost

